Closing Tue, Apr. 7: 12.1, 12.2, 12.3 Closing Thu, Apr. 9: 12.4(1)(2),12.5(1)

<u>12.2 Vectors Intro</u> Goal: Introduce vector basics.

Def'n: A **vector** is a quantity with magnitude and direction.

We depict a vector with an arrow:

- a. The length is the *magnitude*.
- b. The 'tail' of the arrow is called the *initial point* and the 'head' is called the *terminal point*.

If the vector is drawn with the tail at the origin and that results in the head being at the point (v_1, v_2, v_3) , then we denote the vector by

v = < v₁, v₂, v₃ >

Basic fact list:

- Two vectors are equal if all components are equal.
- We denote **magnitude** by

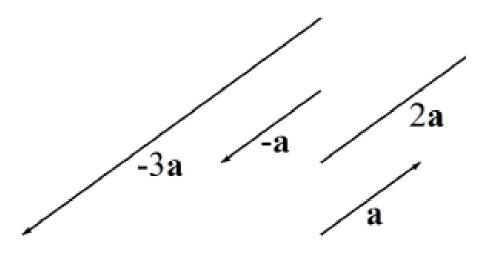
$$|\boldsymbol{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

• To denote the vector from $A(a_1,a_2,a_3)$ to $B(b_1,b_2,b_3)$, we write $\overrightarrow{AB} = \langle b_1 - a_1, b_2 - a_2, b_3 - a_3 \rangle$

• Scalar Multiplication

If c is a constant, then we define

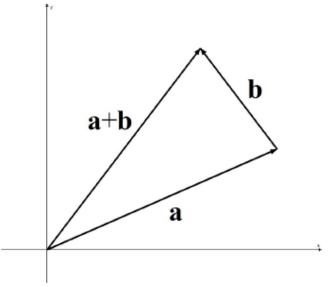
 $c\mathbf{v} = \langle cv_1, cv_2, cv_3 \rangle$, which scales the magnitude by a factor of c.



• A **unit vector** has length one. Note:

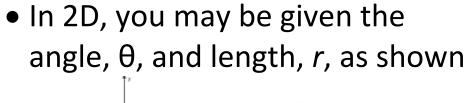
$$\frac{1}{|v|}v = "unit vector in the same direction as v".$$

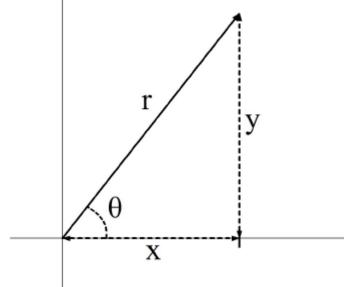
We define the vector sum by
 v + w = < v₁, v₂, v₃> + <w₁, w₂, w₃>
 = < v₁ + w₁, v₂ + w₂, v₃ + w₃>



• Standard unit basis vectors:

i = < 1, 0, 0 >
j = < 0, 1, 0 >
k = < 0, 0, 1 >





Remember, x = r cos(θ), y = r sin(θ), x² + y² = r². In 2D, if you want a vector that is parallel to a line with slope m, then the vector < 1, m > works. 12.3 Dot Products

If **a** = < a_1 , a_2 , a_3 > and **b** = < b_1 , b_2 , b_3 > Then we define the dot product by: **a** · **b** = $a_1b_1 + a_2b_2 + a_3b_3$

Basic fact list:

• Manipulation facts
(like regular multiplication):

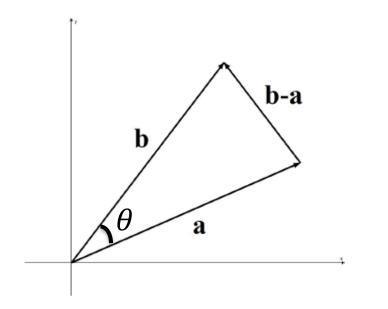
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

 $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$
 $\mathbf{c}(\mathbf{a} \cdot \mathbf{b}) = (\mathbf{ca}) \cdot \mathbf{b} = \mathbf{a} \cdot (\mathbf{cb})$
 $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) = ???$

• Helpful fact:

$$\mathbf{a} \cdot \mathbf{a} = a_1^2 + a_2^2 + a_3^2 = |\mathbf{a}|^2$$

Most *important* dot product fact: $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$



Proof (not required): (1) By the Law of Cosines: $|\mathbf{b} - \mathbf{a}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos(\theta)$

(2) The left-hand side expands to $|\mathbf{b} - \mathbf{a}|^2 = (\mathbf{b} - \mathbf{a}) \cdot (\mathbf{b} - \mathbf{a})$ $= \mathbf{b} \cdot \mathbf{b} - 2\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{a}$ $= |\mathbf{b}|^2 - 2\mathbf{a} \cdot \mathbf{b} + |\mathbf{a}|^2$

Subtracting $|\boldsymbol{a}|^2 + |\boldsymbol{b}|^2$ from both sides of (1) yields: $-2\mathbf{a} \cdot \mathbf{b} = -2|\mathbf{a}||\mathbf{b}|\cos(\theta)$. Divide by -2 to get the result. (QED) Most important consequence: If **a** and **b** are orthogonal, then $\mathbf{a} \cdot \mathbf{b} = 0$ Also: If **a** and **b** are parallel, then $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|$ or $\mathbf{a} \cdot \mathbf{b} = -|\mathbf{a}||\mathbf{b}|$ **Projections:**

